
Addressing the Challenges of
Linux OS Development

Development Life Cycle

Development Paradigm
Traditional

HW Bring-up

• Out-of-reset
testing

• On-chip
Debugging
Interface test

• Minimal code
execution test

• HW Peripherals
test

Boot Loader
Development

Boot Loader
Development

• Bootstrap code
including Chip
selects, Memory,
MMU, interrupt
controllers, timers,
PCI devices and
Cache

• Communication
channels (RS-232,
and Ethernet)

Kernel
Bring-up

• Initializations,
Device Drivers

• Mounting a File
System

• Other OS
component
initializations

First
Application

Development

• Debugging
application with
multiple
processes and
multiple threads

Kernel
Bring-up

Application
Development

HW
Bring-up

HW Bring-up

Challenge

Out-of-reset testing:
• Controlling the processor’s reset, and monitoring the out-of-

reset process

HW Diagnostics:
• Connecting to the CPU with On-Chip Debug tools and putting

the processor into background mode

• Testing and troubleshooting memory, data bus, address bus,
and other peripherals problems without software to run on the
CPU

HW Bring-up

Solution

Out-of-reset testing & HW Diagnostics:

• A full featured On-Chip Debugging emulator will enable you
to issue a reset to the processor, monitor the reset sequence
as it happens, and report problems

• Use the emulator’s built-in code execution diagnostics to
check if the processor is able to run basic code

• Use built-in HW diagnostics and other HW configuration
utilities to test and configure your HW

Boot-loader

Challenge

Boot-strap code:
• The CPU and peripherals need to be initialized with the

correct values and in the correct sequence

Execution and Control:
• Bootstrap/Bootloader code must be developed before the

distribution software debugging tools can be used

• Programming the bootloader onto your board when there is
no code running

• Software debugging tools require code and a communications
channel (serial or ethernet) that are not available until the
code and drivers are developed

Boot-loader

Solution

• Gain access to monitor core and peripheral registers

• Download and Debug the bootloader running from RAM

• Use breakpoints inside of the ISRs to verify execution of
code through the vector regions

• Program flash with the bootloader that you have created

• Use HW breakpoints to debug your code execution in ROM

Use also an On-Chip Debugger to:

Kernel Bring-up

Challenge

Kernel and Device Drivers:
• The Linux kernel requires some kind of initializations provided

by a bootloader before it can run

• Incorrect boot configuration or kernel initialization causes the
kernel to crash early in execution before software tools can
connect and provide visibility

• Kernel development frequently results in kernel crashes.
When the kernel crashes, the kgdb debug channel also
crashes.

• Tools are typically tailored to a specific distro, and in some
cases a specific kernel version. Support of multiple distros or
kernel versions requires multiple development toolsets

Kernel Bring-up

Solution

Use an On-Chip Debugging Emulator that supports:
• Debugging with MMU enabled, in both physical and virtual

memory

• Setting HW and SW breakpoints
in both physical and virtual
memory

• Linux distribution and kernel version independent

• Source level debugging in the kernel without the
intrusion of instrumentation or a software

Kernel Bring-up

Challenge

Mounting a File System:

• Linux requires a root file system (“Everything is a file”)

• NFS mounted root file system requires a network device
driver to be in place and functioning reliably

Kernel Bring-up

Solution

Mounting a File System:

• Start with a RAM disk to debug kernel initialization and the
connection channels required for your NFS mounted disk

• Use your On-Chip Debug connection to download the RAM
disk contents to the target board

• Once the kernel boots and your connection channel is
functioning reliably, substitute your NFS mounted file system
and debug

Application Development

Challenge

Multiple Process/Thread Debugging:
• Debugging a multi-threaded application using GDB is not

reliable in a cross-development environment

• Debugging a single thread from within a process halts the
entire process and all related threads

• Multiple debugging sessions for multiple processes
sometimes confuses because multiple processes can only be
debugged by launching separate gdb GUI and server
sessions for each process

• Debugging a user application that accesses resources in the
kernel space requires a separate (and different) debug agent
for both the application and kernel

Application Development

Solution

• Runs as a ‘polling’ RPC server kernel thread to enable both kernel
and user application debugging

• Leverages signals to debug processes
• Works over serial and Ethernet

WDB kernel
thread

User space

Kernel

Process 1 Process 2 Process 3 Process 4

Kernel
thread 1

Kernel
thread 2

User thread 1

User thread 2

Ethernet driver

Multiple Processes/Thread Debugging:
• Use a debug agent that:

Questions
?

