Addressindthe allenges of
Linux OS De pment

WIND RIVER)

Development Paradigm]

Traditional WIND RIVER
HW Boot Loader Kernel Application
Bring-up Development Bring-up Development

Development Life Cycle

* Out-of-reset * Bootstrap code « Initializations, « Debugging
testing InCI|UdIngMChIp Device Drivers application with

. i selects, Memory, . : : multiple
CDJQb%hglging MMU, interrupt g/losutg'un?g 2 I processes and
[nterracetest controllers, timers, y multiple threads

PCI devices and e Other OS

 Minimal code Cache component
execution test S EarreEtie initializations

 HW Peripherals channels (RS-232,

test and Ethernet)

D

HW Bring-up WIND RIVER

Out-of-reset testing:

« Controlling the processor’s reset, and monitoring the out-of-
reset process

HW Diagnostics:

« Connecting to the CPU with On-Chip Debug tools and putting
the processor into background mode

Challenge

« Testing and troubleshooting memory, data bus, address bus,
and other peripherals problems without software to run on the
CPU

HW Bring-up @

WIND RIVER

Out-of-reset testing & HW Diagnostics:

« A full featured On-Chip Debugging emulator will enable you
to issue a reset to the processor, monitor the reset sequence
as it happens, and report problems

« Use the emulator’s built-in code execution diagnostics to
check if the processor is able to run basic code

Solution

« Use built-in HW diagnostics and other HW configuration
utilities to test and configure your HW

D

Boot-loader
WIND RIVER

Boot-strap code:

« The CPU and peripherals need to be initialized with the
correct values and in the correct sequence

Execution and Control:

« Bootstrap/Bootloader code must be developed before the
distribution software debugging tools can be used

Challenge

« Programming the bootloader onto your board when there is
no code running

« Software debugging tools require code and a communications
channel (serial or ethernet) that are not available until the
code and drivers are developed

Boot-loader

D

WIND RIVER

Solution

Use also an On-Chip Debugger to:

Gain access to monitor core and peripheral registers
Download and Debug the bootloader running from RAM

Use breakpoints inside of the ISRs to verify execution of
code through the vector regions

Program flash with the bootloader that you have created

Use HW breakpoints to debug your code execution in ROM

:/;

Kernel Bring-up

D

WIND RIVER

Challenge

Kernel and Device Drivers:

The Linux kernel requires some kind of initializations provided
by a bootloader before it can run

Incorrect boot configuration or kernel initialization causes the
kernel to crash early in execution before software tools can
connect and provide visibility

Kernel development frequently results in kernel crashes.
When the kernel crashes, the kgdb debug channel also
crashes.

Tools are typically tailored to a specific distro, and in some
cases a specific kernel version. Support of multiple distros or
kernel versions requires multiple development toolsets

Kernel Bring-up wmﬁwm

Use an On-Chip Debugging Emulator that supports:

« Debugging with MMU enabled, in both physical and virtual
memory

- Sources Yiewing O\ ESTID WalnutDemo' linux-24.18

« Setting HW and SW breakpoints |
in both physical and virtual ies up 2 thread for executing a new progies
memory '] ; i

= st 3
<= [D00032C4] mflc FD
[o0npasca]

- fa [Staw Ed7,0x
SO I utl On <= [O000BSCC] =tw R0, %3

« Linux distribution and kernel version independent

« Source level debugging in the kernel without the
intrusion of instrumentation or a software

D

Kernel Bring-up WIND RIVER

Mounting a File System:

« Linux requires a root file system (“Everything is a file”)

« NFS mounted root file system requires a network device
driver to be in place and functioning reliably

Challenge

D

Kernel Bring-up WIND RIVER

Mounting a File System:

- Start with a RAM disk to debug kernel initialization and the
connection channels required for your NFS mounted disk

« Use your On-Chip Debug connection to download the RAM
disk contents to the target board

Solution « Once the kernel boots and your connection channel is
functioning reliably, substitute your NFS mounted file system

and debug

Application Development

D

WIND RIVER

Challenge

Multiple Process/Thread Debugging:

Debugging a multi-threaded application using GDB is not
reliable in a cross-development environment

Debugging a single thread from within a process halts the
entire process and all related threads

Multiple debugging sessions for multiple processes
sometimes confuses because multiple processes can only be
debugged by launching separate gdb GUI and server
sessions for each process

Debugging a user application that accesses resources in the
kernel space requires a separate (and different) debug agent
for both the application and kernel

D

Application Development WIND RIVER

Multiple Processes/Thread Debugging:
« Use a debug agent that:

+ Runs as a ‘polling’ RPC server kernel thread to enable both kernel
and user application debugging

+ Leverages signals to debug processes

« Works over serial and Ethernet

S O I U tl O n Process 1 Process 2 Process 3 Process 4

User space

User thread 1

User thread 2

P, 4

Kernel Kernel
WDB kernel
Kernel
thread thread 1 thread 2

| Ethernet driver |

Questions
f?

